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Literature on learning trajectories is reviewed, and challenges in developing designs to 
support responsive instruction are highlighted. A distinctive form of design called a multi-
dimensional instructional framework is introduced. These frameworks span key dimensions 
of mathematisation, such as notating and distancing the setting, with each dimension outlined 
by a progression of levels. A framework comprises the matrix of combinations of levels 
across its dimensions. The framework form is described, and illustrated with the frameworks 
for two domains, drawn from a program of design research. The potential of the form to 
support responsive instruction is discussed, and considered to be promising. 

In the endeavour of instructional design, Confrey (2006) advised: “One cannot prescribe 
practices, but one can guide practice by means of explanatory frameworks accompanied by 
data, evidence, and argument” (p. 139). Researchers and instructional designers have sought 
to develop forms of explanatory frameworks that can effectively guide practice. Over the 
last 20 years, various forms described as learning trajectories and related terms have been 
designed, usually for specific domains of mathematical instruction such as early addition 
and subtraction or multiplicative thinking. 

In a program of design research (Cobb & Gravemeijer, 2008) on intervention in number 
learning (Wright & Ellemor-Collins, 2018), we have developed a form we call a multi-
dimensional instructional framework. The aim of this paper is to describe the form and its 
potential contribution to instructional design. The paper is presented in four sections. Firstly, 
we briefly review forms of instructional design, and the kind of instruction we aspire to 
support with our designs. Secondly, we acknowledge our research program as a basis for our 
designs. Thirdly, we describe our proposed form, the multi-dimensional instructional 
framework, drawing on examples from our design studies. Finally, we discuss some of the 
features and potential of the form. 

Background: Forms of Instructional Design 
Responsive, Inquiry-Based Instruction 

A broad consensus of researchers aspires to a responsive, inquiry-based approach to 
instruction (e.g., Mason & Johnston-Wilder, 2006; van den Heuvel-Panhuizen, 2001). 
Teachers need to pose tasks that are genuine problems for students, and to pay attention to 
students’ reasoning in responding to those tasks. Instruction needs to support progressive 
mathematisation (Freudenthal, 1991; Gravemeijer, Cobb, Bowers, & Whitenack, 2000), 
developing from students’ informal, context-bound strategies toward more formal and 
sophisticated reasoning. Teachers need to keep adjusting instruction to the cutting edge of 
students’ current knowledge, to provoke new insights and developments (Mason & 
Johnston-Wilder, 2006; Wright, Ellemor-Collins & Tabor, 2012). Given these aspirations, 
instructional designers seek to develop designs that can support responsive, inquiry-based 
instruction. 
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Learning Trajectories and Learning Progressions 
Learning trajectory has become a widely-used term for an instructional design drawing 

together research on learning and teaching. As an example, Clements and Sarama (2009) 
described their learning trajectories having three parts: “a specific mathematical goal, a 
developmental path along which children develop to reach that goal, and a set of instructional 
activities that help children move along that path” (p. ix). Many researchers promote learning 
trajectories as forms of design that can support responsive instruction (Empson, 2011; 
Sztajn, Confrey, Wilson, & Edgington, 2012), with Daro, Mosher, and Corcoran (2011) 
concluding that they “hold great promise as tools for improving instruction in mathematics” 
(p. 13). 

As designers seek to best support instruction, a variety of related forms of design have 
been developed (Battista, 2011). When Simon (1995) coined the term hypothetical learning 
trajectory, he was describing a teacher’s local instructional planning for a class: the imagined 
sequence of tasks she might pose, what responses she anticipates, and what conceptual 
challenges the students might be working with. By contrast, Clements and Sarama’s (2009) 
10 learning trajectories were developed from large-scale research projects, and presented as 
extended tables listing summaries of each level in a developmental progression over several 
years, with corresponding instructional tasks. Siemon and colleagues’ (2018) learning 
progressions have a similar structure of developmental levels, but were derived using Rasch 
modelling. Dutch teams developed another form, learning–teaching trajectories (van den 
Heuvel-Panhuizen, 2001), presented in textual descriptions organised in various phases and 
topics which overview the learning process and how didactics interact with the learning. 

Challenges for Forms of Instructional Design 
Aspiring to support responsive instruction presents challenges to forming an 

instructional design. One challenge is that inquiry-based learning is not linear. For example, 
in Empson’s (2011) research using learning progressions, she found that deviations from the 
planned progression were “consistent and numerous” (p. 580), and concluded “trying to 
represent research on learning in terms of trajectories quickly gets complicated” (p. 577). 
Fosnot and Dolk (2001) opt for a non-linear design they call a “landscape of learning”; others 
use networks, or rich descriptions (Sztajn et al., 2012). Can we develop forms of instructional 
design that can hold the many convoluted paths of student learning, while remaining 
sufficiently clear to support the teacher? 

A second challenge is grain size. Siemon and colleagues (2018) try to meet teachers’ 
needs by providing useful summaries of zones of learning through major domains of high 
school mathematics, but admit that “the risk is that the grain size is large” (p. 46). Battista 
(2011) asks that an instructional design have “indications of jumps in sophistication that are 
small enough to fall within students’ ‘zones of construction’” (p. 530), to adjust to their 
cutting edge. For some, these can be small jumps indeed (Wright & Ellemor-Collins, 2018). 
Extending his vision, Battista asks if a design can support not just planning, but moment-to-
moment teaching, to “continuously adjust instruction to meet students’ evolving learning 
needs” (p. 513). We are interested in forms of design that meet these challenges. 

Research Program: Developing Pedagogical Tools for Intervention 
Wright has led a long-running program of research and development since the 1990s, 

addressing intervention in number and arithmetic with low-attaining primary students 
(Wright & Ellemor-Collins, 2018; Wright, Ellemor-Collins & Lewis, 2007; Wright et al., 
2012). The program has included several multi-year projects, involving intensive 
professional development with groups of teachers and intervention with students. The 
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program uses a design research methodology (Cobb & Gravemeijer, 2008), involving cycles 
of assessment and teaching recorded on video, and analysed to better understand and refine 
the instructional designs. The research has focused on developing pedagogical tools, such as 
schedules of assessment tasks, models of learning progressions, and instructional 
frameworks, along with associated instructional theory. Studies have addressed designs for 
specific domains of number, such as multi-digit addition and subtraction (Ellemor-Collins 
& Wright, 2011a) and multiplicative computation (Ellemor-Collins, 2018). The designs 
discussed below draw on this body of research. 

Multi-Dimensional Instructional Frameworks 
We have developed a form of domain-specific instructional design we call a multi-

dimensional instructional framework. We have designed multi-dimensional instructional 
frameworks for nine domains of number knowledge (Wright & Ellemor-Collins, 2018). We 
will describe this form of framework using an example: the framework for a domain we call 
Conceptual Place Value (CPV) (Ellemor-Collins & Wright, 2011a; Wright et al., 2012). 
CPV involves learning to flexibly increment and decrement numbers by 1s, 10s, and 100s, 
an informal knowledge of unitary coordination that is foundational for mental computation 
with multi-digit numbers. 

An instructional framework for a given domain is organised around a few key 
dimensions of mathematisation. Each dimension involves a progression of levels. Figure 1 
shows the CPV framework comprising three dimensions: extending the range of numbers, 
distancing the setting, and making the increments more complex. The progression of levels 
in each dimension is also outlined in the figure. 

The framework then forms the matrix of all possible combinations of levels across these 
dimensions. To present this matrix of possibilities, we construct a chart in rows and columns, 
somewhat like a Cartesian product space. Figure 2 shows a portion of the CPV chart (Wright 
& Ellemor-Collins, 2018). Without needing to explain all the domain-specific terms in this 
abbreviated chart, the figure is sufficient to illustrate how such a chart can work. 

 

Figure 1. Three dimensions of mathematisation in Conceptual Place Value. 
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Figure 2. Partial chart of the instructional framework for Conceptual Place Value. 

The dimension of extending the range is laid out in big steps running vertically down the 
chart, progressing from Range I to Range III. The dimension of making the increments more 
complex is nested within each of those ranges, from incrementing by 10s only to 
incrementing by 1s and 10s; and is further indicated within some of the cells to extend to 
switched, multiple, and mixed units. The dimension of distancing the setting is laid out 
horizontally along each row, from materials shown, to screened, to introducing arrow cards. 
With the three dimensions thus spanning the rows and columns of the chart, each white cell 
of the chart indicates a combination of calibrations on those three dimensions. For example, 
the top left cell indicates instruction with range low (to 130), complexity low (incrementing 
by single 10s), and setting low (sticks shown). Importantly, the intention is not that 
instruction will progress through every cell, nor that it will progress systematically through 
each row and column. Rather, the framework provides a schematic map of possibilities for 
instruction that can adjust forwards or backwards along any of the dimensions at any point. 

For example, early CPV instruction will typically stay in the lowest range, and advance 
along the dimension of complexity by incrementing multiple 10s, switching between 
increments of 10s and 1s, and incrementing by mixed 10s and 1s. Alongside these advances 
in complexity, the setting dimension will move between visible and screened: After some 
initial visible tasks, the setting is screened to challenge the students’ visualisation, but the 
screen is also lifted sometimes for the students to check their answers and discuss their 
reasoning. On the chart, this instruction works around the square of four cells in the top left. 

As fluency is established with these tasks, one line of instructional progression—
suggested moving across the second row of the chart—advances the setting dimension 
further by introducing numerals, and moving towards tasks in bare numbers. For this 
progression, the range remains low, and the complexity might be retreated to simple 
increments while the written setting is introduced, before advancing again to switched and 
mixed increments. Another line of progression—suggested moving down the first column—
maintains the setting in the lower levels of visible and screened materials, but extends the 
range towards 1000, introducing materials for 100s as well as 10s and 1s. This higher range 
will involve a new progression in the complexity of the increments: introducing simple 
increments of 100, then developing towards switching and mixing of three different units. 
The setting will again move back and forth between visible and screened materials. Later 
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CPV instruction progresses to advanced levels on all three dimensions, which would appear 
in the lower right cells of the chart, with tasks in the range across and beyond 1000, 
increments mixed and complex, and a setting of bare numbers. 

While these are common lines of development, many idiosyncratic paths are possible. 
The framework does not direct a sequence of tasks. Rather, it lays out a map of potential 
progressions and adjustments, to support the teacher to make small adjustments in tasks that 
advance or retreat the level of challenge, along different dimensions, and with different 
combinations of dimensions, all leading toward significant mathematisation in the domain. 

Dimensions of Mathematisation 
Central to the construction of these instructional frameworks is the notion of a dimension 

of mathematisation (Ellemor-Collins & Wright, 2011b; Wright & Ellemor-Collins, 2018). 
The notion builds on research identifying particular forms of mathematising prominent in 
instruction, such as decimalising (e.g., Freudenthal, 1991); symbolising (e.g., Gravemeijer 
et al., 2000); and generalising (e.g., Mason & Johnston-Wilder, 2006). Dimensions of 
mathematisation are also related to the notion of dimensions-of-possible-variation in tasks 
(Mason & Johnston-Wilder, 2006). However, when describing longer progressions in 
instruction, the dimensions extend further than individual tasks: they become the key 
progressions within a whole instructional domain. Ellemor-Collins and Wright (2011b) 
developed a list of 10 dimensions of mathematisation significant across many domains of 
arithmetic instruction, including: distancing the setting, formalising, generalising, notating, 
refining computation strategies, structuring numbers, and unitising numbers. 

Describing a Multi-Dimensional Instructional Framework 
The most concise description of an instructional framework identifies the key 

dimensions, and the levels in each dimension, as in Figure 1. The teaching chart, as in Figure 
2, offers more guidance, by including instructional tasks across the whole matrix of possible 
combinations of levels, and suggesting basic lines of progression through this matrix. 
Ultimately, a full description of a framework requires even more detail, explaining task 
types, the use of settings, subtler adjustments along the dimensions, and relationships 
between the dimensions, alongside accounts of student responses and progressions (Wright 
et al., 2012). Video exemplars of instruction and analyses of student learning can contribute 
to a rich description of the instructional design. 

A Second Example: The Instructional Framework for Multiplicative Basic Facts 
A second example of a multi-dimensional instructional framework is the framework for 

the domain of Multiplicative Basic Facts (Ellemor-Collins, 2018; Wright & Ellemor-Collins, 
2018). The domain develops multiplicative strategies for mental computation of 
multiplication and division, and increasing automaticity with the basic facts. It is a more 
complex domain than CPV, and the framework comprises, not three, but five key 
dimensions. Figure 3 is a schematic chart for the framework, showing the Range dimension 
(RNG) progressing vertically; the Structuring and strategies dimension (STR) nested within 
each range; the Setting (SET) and Notation (NTN) dimensions overlapping horizontally; and 
the Orientation dimension (ORN) varying within each cell. The richer description of the 
framework includes, for example, peculiarities within each range, the intertwining of the 
setting and notation dimensions, and ways the varying orientation interacts with the setting. 
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Figure 3. Schematic chart for the instructional framework in Multiplicative Basic Facts, showing the span of 
five dimensions: Range (RNG), Structuring (STR), Setting (SET), Notation (NTN), and Orientation (ORN). 

Also, more fine-grained progressions are described for each of the dimensions. For example, 
gradations in the setting dimension include: partially screening materials, flashing materials, 
requesting descriptions of the materials when screened, and referring to materials without 
using them. A subtle gradation in the range is shifting from even to odd multiples of 5. 

Discussion 
Earlier we described challenges to develop forms of instructional design that support 

responsive, inquiry-based instruction. We propose that the multi-dimensional instructional 
framework is a promising form. It creates a wide space of instructional tasks in which to 
observe students’ problem-solving, and to engage in dialogue with them about their 
mathematical activity (Mason & Johnston-Wilder, 2006). The framework does not direct the 
teacher on a pre-determined sequence; rather, it offers options for the teacher to respond to 
the dialogue by adjusting instruction forwards, sideways and backwards. 

To support progressive mathematisation, a multi-dimensional framework is based on key 
dimensions of mathematisation, and orients the instruction to progress along these 
dimensions. Treffers (1987) suggested that “besides macro-levels in the learning process, 
one can distinguish finer meshes and a stepwise structure of mathematising at the micro-
level” (pp. 248–9). We find that a well-developed multi-dimensional framework can 
illuminate this micro-level, offering the teacher potential adjustments in these finer meshes. 

To support teaching at the cutting edge, a multi-dimensional framework indicates fine-
graded adjustments on multiple dimensions. The framework reveals how to adjust a single 
dimension only, forwards or backwards, and how a single task can be extended in a few 
different directions, without any one being a jump too far-the ‘small jumps’ Battista (2011) 
seeks. Furthermore, the framework indicates these possibilities at any point in the 
instructional map, so a teacher can not only pitch to the cutting edge, but can keep adjusting 
tasks along a changing cutting edge. The multi-dimensional form can be a powerful support 
for responsive instruction. 
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A multi-dimensional framework offers a space that can hold the rich detail of manifold 
convoluted paths. At the same time, the framework can crystallise what is common across 
those paths: progression along a handful of dimensions. The combined potential for 
simplicity and detail has proven a compelling characterisation of instruction, in our analyses 
of observed intervention, and in our professional development work with teachers. 

Guiding Instruction with Dimensions rather than Phases 
A common approach to instructional design is to identify phases of instruction. Most of 

the examples of learning trajectories reviewed earlier in the paper are constructed as a single 
sequence of phases or levels—the trajectories of Clements and Sarama (2009), and the 
progressions of Siemon and colleagues (2018) for instance. Multi-dimensional instructional 
frameworks are distinctive in being constructed as a span of dimensions, rather than a 
sequence of phases. To highlight the difference with a metaphor: When giving directions to 
the castle, instead of saying “through the marsh, through the forest, and across the field”, we 
say “head northwards, and westwards, and uphill”. Instead of identifying lateral phases that 
get travelled across, we identify longitudinal dimensions that get travelled along. 

We have found this distinctive form illuminating. For example, in Ellemor-Collins’s 
(2018) study of a sequence of lessons on multiplication, phases of instruction could be 
identified retrospectively: Phase A involved a setting of materials but no notation, while 
Phase B involved notation but no materials. An instructional design could duly recommend 
a teacher look out for when Phase A is ending, and transition to Phase B. However, such a 
phase-oriented design would not align with the actual instructional decision-making 
observed during those lessons. In the lessons, notation was introduced not because of student 
accomplishment with the materials, but because of student confusion, and an attempt to 
reconnect to the cutting edge of the student’s understanding. Over the two lessons after the 
notation was introduced, the student attended increasingly to the notation and decreasingly 
to the setting, and the teacher responded to this shifting attention with adjustments in the 
tasks. Ellemor-Collins argued that the organisation of instruction be described “not as an 
attempt to transition between two phases, rather as a consistent attempt to keep [the student] 
at his cutting edge, strategically adjusting two dimensions to do so: the setting and the 
notation” (p. 309). From a phase perspective, those two lessons can get sidelined as 
transitional; but from a dimension perspective, the lessons appear significant, and they 
illuminate progressions in two dimensions and the interactions between those dimensions. 

Further Research 
We have done considerable design research developing multi-dimensional frameworks 

for domains of arithmetic, especially in the fine-graded detail useful for one-to-one 
intervention. Three immediate lines of research beckon. One is to modify the frameworks 
we have developed to suit the particular needs of classroom teachers. We have begun pilot 
studies in this development. A second is for researchers to develop multi-dimensional 
frameworks for other domains of mathematics instruction. A third is to study how teachers 
are learning and using these frameworks, to better understand how the frameworks work for 
teachers. We hope this promising form of design can be applied widely. 
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